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Abstract

Dynamics of the piecewise smooth nonlinear oscillators is considered, for which, general methodology of reducing

multidimensional flows to low-dimensional maps is proposed. This includes a definition of piecewise smooth oscillator and

creation of a global iterative map providing an exact solution. The global map is comprised of local maps, which are

constructed in the smooth sub-regions of phase space. To construct this low-dimensional map, it is proposed to monitor

the points of intersections of a chosen boundary between smooth subspaces by a trajectory. The dimension reduction is

directly related to the dimension of the chosen boundary, and the lower its dimension is, the larger dimension reduction

can be achieved. Full details are given for a drifting impact oscillator, where the five-dimensional flow is reduced to one-

dimensional (1D) approximate analytical map. First an exact two-dimensional map has been formulated and analysed.

A further reduction to 1D approximate map is introduced and discussed. Standard nonlinear dynamic analysis reveals a

complex behaviour ranging from periodic oscillations to chaos, and co-existence of multiple attractors. Accuracy of the

constructed maps is examined by comparing with the exact solutions for a wide range of the system parameters.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamics of vast majority of physical systems can be defined in terms of multidimensional flows, and if
these flows are described by linear differential equations there are well-developed mathematical techniques,
which can provide effective analytical solutions. However, a good deal of multidimensional flows are described
by nonlinear equations, which brings difficulties in proving even the solution existence. It has been understood
that the most effective way to tackle this problem is dimension reduction, and in this paper we propose a
general approach to reduce dimensionality of piecewise smooth oscillators. Specifically we have shown how to
create one-dimensional (1D) approximate iterative map for a piecewise linear oscillator which in autonomous
form is described by five first-order differential equations.

Piecewise smooth systems are known to exhibit complex bifurcation scenarios and chaos and their dynamics
has been recently intensively studied (see for example, [1]). These systems can undergo all types of bifurcations
that smooth ones do, but apart from them there is whole class of bifurcations that are unique to piecewise
smooth systems such as grazing [2–4], chattering [5] or sliding [6]. A good deal of work has been done to
study these special bifurcations using normal form maps derived locally near grazing (see for example [6–8]).
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The general bifurcation scenarios in explicitly defined two dimensional (2D) piecewise smooth maps were also
considered in [9,10]. In the published literature there are also a number of systematic examples showing how
such low-dimensional approximate maps are constructed, e.g. [2,11–13] to name a few. However, typically
low-dimensional maps are constructed based on the observations of behaviour and consequently the
properties of the particular systems under consideration, and the authors are not aware of any universal
approach to the problem of dimension reduction. Therefore, in this article we propose a general methodology
of reducing dimensionality for piecewise smooth oscillators, and we will show the process of developing first
the exact 2D map and then 1D approximate map for a five-dimensional (5D) autonomous system modelling of
a drifting impact oscillator.

The paper is organized as follows. In the next section general description of the non-smooth dynamical
system is introduced, and a drifting impact oscillator is given as an example of 5D non-smooth system. The
methodology of constructing low-dimensional maps is explained in Section 3, where the main ideas are to
monitor intersections of the system trajectory with the borders of the smooth sub-regions, and to create a
global map, from local maps describing the system behaviour in the individual smooth sub-regions. Again, the
drifting oscillator is used to illustrate the application of general methodology. In Section 4 periodic orbits of
2D map are considered and their stability is investigated. A further reduction to 1D approximate map is
introduced in Section 5, where this approximate map is also analysed. Finally, conclusions and appendixes
with additional mathematical details are given.

2. Piecewise smooth dynamical systems

In many engineering applications, characteristics of a dynamical system can be non-smooth in nature, which
mathematically leads to so-called piecewise smooth dynamical systems. As well-known examples, one may
point out an impact oscillator (e.g. [14]), piecewise linear oscillators (e.g. [15–18]), mechanical ‘‘bouncing ball’’
system [19], Jeffcott rotor with bearing clearances [20–22], systems with Coulomb friction (e.g. [23,24]), gear-
box systems [25–27] and metal cutting processes [28,29]. General methodology of describing and solving non-
smooth dynamical system which originates from the Fillipov’s approach [30] can be found for example in
[31,32]. It includes modelling of discontinuous systems by discontinuous functions and by smooth functions.
In this paper the first approach will be adopted, where a dynamical system is defined in global hyperspace O as
continuous but not necessarily smooth autonomous system

_x ¼ fðx; pÞ, (1)

where x ¼ ½x1;x2; . . . ;xn�
T is the state space vector (xn is used to represent time), p ¼ ½p1; p2; . . . ; pm�

T is a
vector of the system parameters, and fðx; pÞ ¼ ½f 1; f 2; . . . ; f n�

T is the vector function which is dependent upon
the system structure or the process being modelled. Then it is assumed that the dynamical system (1) is smooth
but only within a subspace Xi of the global hyperspace O (see Fig. 1). Therefore for each subspace Xi ðx 2 XiÞ

the right-hand side of Eq. (1) may be described by different function, f iðx; pÞ where i 2 ½1;N�. The global
solution is obtained by matching the local solutions on the hypersurfaces PXi;iþ1 (where i 2 ½1;N � 1�). As the
system dynamics evolves, a trajectory passes through neighbouring subspaces. If the trajectory closes as shown
in Fig. 1, the system exhibits periodicity which is central to the proposed scheme. Otherwise chaotic, unstable
or quasiperiodic motion can occur. When a hypersurface PXiþ1;iþ2 is intersected by a trajectory emanating
from the subspace Xiþ2 towards Xiþ1 for the kth non-smoothness occurrence, the mapping xk

ðþÞ�!xk
ð�Þ takes

place. In order to solve the system (1) with piecewise smooth forcing functions, the precise values of the
crossing times tk have to be determined as the system response may be very sensitive to any inaccuracy of the
computed solutions at all non-smoothness occurrences. Consequently, suitable switch functions for the non-
smoothness detection have to be formulated.

In this study we will explain the proposed reduction scheme using an example of a 5D non-smooth
dynamical system, which models a drifting impact oscillator. This system has been a subject of significant
studies elsewhere [18,33–35]. However, for the purpose of clarity we will briefly summarise its main features.
We consider a drifting two degrees-of-freedom oscillator, i.e. a mass m is driven by an external force f

containing static b and dynamic a cosðotþ jÞ components which collides with the weightless slider having a
linear visco-elastic pair of stiffness k and damping c. The system is non-dimensionalized, where t, 2x, f, b, a,
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Fig. 1. Conceptual model of a piecewise smooth dynamical system, where thick lines (solid and dash) denote trajectories within subspaces

and thin lines—trajectories sliding on the hypersurfaces.
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and o are non-dimensional time, damping coefficient, force, static component, and amplitude and frequency
of dynamic component, respectively. As has been reported by Pavlovskaia et al. [18] the slider drifts in
stick–slip phases where the relative oscillations between the mass and the slider are bounded and range from
periodic to chaotic. The progressive motion of the mass occurs when the force acting on the slider exceeds the
threshold of the dry friction force d. x; z; v represent the absolute displacements of the mass, slider top and
slider bottom, respectively. It is assumed that the model operates in a horizontal plane, or the gravitational
force is appropriately compensated. At the initial moment t ¼ 0 there is a distance between the mass and the
slider top called gap, e. The difference u ¼ ðzþ eÞ � x is introduced to monitor the actual distance between the
mass and the slider top. For the simplicity of the further analysis the dimensionless friction threshold force, d

is set to 1.
The considered system can be at the time in one of the three following modes: No contact (the state space

vector belongs to subspace X1), Contact without progression (the state space vector belongs to subspace X2),
and Contact with progression (the state space vector belongs to subspace X3). If the u is greater than zero,
zþ e� x40, then the mass and the slider top move separately during No contact mode. Once u is equal to
zero, i.e. zþ e� x ¼ 0, and the force acting on the mass from the slider is greater than zero but smaller than
the threshold of the dry friction force, Contact without progression mode occurs when the mass and the slider
top move together without progression. When u ¼ zþ e� x ¼ 0, and the force acting on the mass is greater
than the threshold of dry friction force, then system operates in Contact with progression mode, where the mass
and the top and the bottom of the slider move together, and progression takes place. A detailed consideration
of these modes and the dimensional form of equations of motion can be found in [18]. The equations of
motion are given by the following set of equations:

x0 ¼ y,

y0 ¼ a cosðsþ jÞ þ b� P1P2ð1� P3Þð2xyþ z� vÞ � P1P3,

z0 ¼ P1y� ð1� P1Þðz� vÞ=2x,

v0 ¼ P1P3P4ðyþ ðz� v� 1Þ=2xÞ,

s0 ¼ o, ð2Þ

where P1 ¼ Hðx� z� eÞ; P2 ¼ Hð2xyþ zÞ; P3 ¼ Hð2xþ z� 1Þ; P4 ¼ HðyÞ; s ¼ ot,

Hð�Þ is Heaviside step function.
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As it was reported in [34] by introducing a new system of coordinates ðp; q; vÞ instead of ðx; z; vÞ, where
p ¼ x� v and q ¼ z� v, it is possible to separate the oscillatory motion from the drift. In fact, in the new
coordinates system p and q are displacements of the mass and the slider top relative to the current position of
the slider bottom v. The equations of motion in new coordinates are given below:

p0 ¼ yð1�H3Þ �
1

2x
ðq� 1ÞH1H3H4,

y0 ¼ a cosðsþ jÞ þ b� ð2xyþ qÞH1H2ð1�H3Þ �H1H3H4,

q0 ¼ yH1H2ð1�H3Þ �
1

2x
ðq� 1ÞH1H3H4 �

1

2x
qð1�H1Þ,

s0 ¼ o, ð3Þ

where H1 ¼ Hðp� q� eÞ; H2 ¼ Hð2xyþ qÞ; H3 ¼ Hð2xþ q� 1Þ; H4 ¼ HðyÞ; s ¼ ot.
The fifth equation is v0 ¼ 0 during No contact and Contact without progression modes when the slider

bottom remains stationary, and v0 ¼ yþ ð1=2xÞðq� 1Þ during Contact with progression mode when the slider
bottom moves with velocity v0. As can be seen from these equations, the bounded oscillations can be
considered separately and drifting motion can be re-constructed thereafter.

The equations of motion are linear for each mode, therefore the global solution can be constructed by
joining the local solutions at the points of non-smoothness. The set of initial values ðt0; p0; y0; q0Þ defines in
which mode the system will operate. If p0oq0 þ e, it will be No contact mode. For p0 ¼ q0 þ e, it will be
Contact without progression mode if 0o2xy0 þ q0o1 or Contact with progression mode if 2xy0 þ q0X1. The
solutions for all specified modes are given in Appendix A. When the conditions corresponding to the current
mode fail, the next mode begins. The final displacements and velocity for the preceding mode define the initial
conditions for the next one. All details of the semi-analytical method allowing to calculate the responses of the
system using this method are given in [33].

As was mentioned earlier, the progression vðtÞ can be calculated separately if the dynamics of the bounded
system ðp; y; qÞ is known (i.e. the sequence of the modes and the initial conditions for them). Since during the
No contact and the Contact without progression modes the progression does not change its value, so

vðtÞ ¼ v0. (4)

For the Contact with progression mode vðtÞ can be calculated as

vðtÞ ¼ v0 þ p0 � e� 1� ðp0 � e� 1Þ exp �
t� t0
2x

� �
þ y0ðt� t0Þ þ

b� 1

2
ðt� t0Þ

2

�
a

o2
½cosðotþ jÞ � cosðot0 þ jÞ þ oðt� t0Þ sinðot0 þ jÞ�. ð5Þ

3. Construction of low-dimensional maps

In this section general methodology of reducing multidimensional flows to low-dimensional iterative maps
for the piecewise oscillators is given. Poincaré return map is a standard method of constructing maps for both
smooth and discontinuous dynamical systems, however it allows to reduce system dimension only by 1.
Another common method of constructing maps is related to rigid impacts where velocity after impact is
modelled by a coefficient of restitution (see for example [36–39]).

There have been a number of successful attempts in the past to reduce the system dimensionality by creating
approximate low-dimensional maps. For example, Lorenz [40] constructed 1D approximate map for 3D
system of ODEs describing a simple model of convection in the atmosphere. Ikeda [41] created an
approximate map to study dynamics of a laser pulse in an optical cavity. Wiesenfeld and Tufillaro [19]
constructed an approximate map for the bouncing ball problem using a high-bounce approximation.
Nordmark [2] derived an approximate map near grazing to study changes of periodic responses for an impact
oscillator. Banerjee et al. [11,12] considered power electronic circuits and obtained low-dimensional maps for
different DC–DC converters by observing the state vector at every clock instant. However in all these and
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others cases, properties of the particular systems have been used, and no universal approach to the problem of
dimension reduction has been offered.

The approached proposed in this paper was inspired by the ideas formulated in the earlier work on impact
maps (see for example [15,36–39]). The technique of constructing a map on the rigid impact surface is
generalised here for piecewise smooth systems with a number of discontinuous boundaries, which are not
limited anymore to the rigid constrains. To construct a low-dimensional map, it is proposed to monitor the
points of intersections of a chosen boundary (hypersurface PXi;iþ1 shown in Fig. 1) by the trajectory. In this
case, the reduction of dimension is directly related to the dimension of the chosen hypersurface, and the lower
its dimension is, the larger dimension reduction can be achieved.

The following procedure is proposed to construct global low-dimensional map for the piecewise smooth
dynamical system. First, the hypersurface PXj;jþ1 with the lowest dimension has to be chosen as the reference
hypersurface. Then the local maps in each of smooth subspaces Xi of the global hyperspace O have to be
constructed. For each smooth subspace Xi local maps will map the points belonging to initial boundary
hypersurface (PXi;iþ1 or PXi�1;i) to the ‘‘destination’’ boundary hypersurface, which is again PXi;iþ1 or
PXi�1;i. It should be noted that depending on the system, more than one local map can exist for each
subspace, for example, mapping PXi�1;i to PXi;iþ1, or mapping PXi;iþ1 to PXi�1;i, or mapping PXi�1;i to
PXi�1;i. The next step is to define local maps on the each hypersurface PXi;iþ1 (i 2 ½1;N � 1�), which will map
the initial position of the system on this hypersurface to the final position xk

ðþÞ�!xk
ð�Þ (see Fig. 1). For an

impact oscillator making contact with the rigid boundary, the direction of the mass velocity will instantly
change at the moment of impact, and this has to be described by the local map introduced on the hypersurface.
Once all local maps are defined, the global map can be constructed by matching local solutions. Thus the
global map monitors only points on the chosen hypersurface PXj;jþ1, and this can be achieved by starting
from the point on PXj;jþ1 and then following the sequence of local maps (which is a priori unknown) until the
hypersurface PXj;jþ1 will be intersected by the trajectory again. The implementation of this procedure is
presented below for the impact oscillator with drift defined in Section 2.

The four-dimensional (4D) flow of this system ðt; p; y; qÞ can be locally three dimensional (3D) as during the
contact modes relative displacements of the mass and slider top are not independent, i.e. p ¼ qþ e. This means
that subspaces X2 and X3 are in fact 3D hypersurfaces, and consequently the borders PX1;2, PX2;3, PX3;2 and
PX2;1 are 2D. The intersections of the trajectories with these borders allow to define a 2D map. Similarly to
Luo and Menon [42] the borders of the different modes of the system are given as:

PX1;2 � S1 ¼ fðti; pi; yi; qiÞj pi ¼ e; yi40; qi ¼ 0g,

PX2;3 � S2 ¼ fðti; pi; yi; qiÞj pi ¼ 1þ e� 2xyi; yi40; qi ¼ 1� 2xyig,

PX3;2 � S3 ¼ fðti; pi; yi; qiÞj pi ¼ 1þ e� 2xyi; yio0; qi ¼ 1� 2xyig,

PX2;1 � S4 ¼ fðti; pi; yi; qiÞj pi ¼ e� 2xyi; yio0; qi ¼ �2xyig. ð6Þ

These subspaces and hypersurfaces are shown in Fig. 2a. The borders of the different modes (2D
hypersurfaces) are represented by lines S1; S2; S3 and S4. As can be seen from Fig. 2b during No contact

mode (i.e. the space vector belongs to subspace X1), the trajectory lies in vicinity of the horizontal plane, q ¼ 0,
and during Contact without progression and Contact with progression modes it belongs to the inclined plane,
q ¼ p� e (i.e. degenerated subspaces X2 and X3).

Based on the four hypersurfaces (6), six local maps (see Fig. 3a) can be defined as follows:

P1:S1 ! S2; P2:S2! S3; P3:S3! S4,

P4:S4 ! S1; P5:S1! S4; P6:S3! S2. ð7Þ

As trajectory of the considered system never slides on the boundary hypersurfaces, there are no local maps on
the hypersurfaces, and the global map P composed only from local maps in subspaces can be introduced. To
construct an iterative map a hypersurface with the lowest dimension has to be chosen. For the considered
oscillator it appears that all boundaries defined in Eq. (6) have the same dimension allowing to define a 2D
map, where the state of the system is fully described by a new variable c ¼ otþ j and velocity y at the
moment of intersection tn. As velocity in the beginning of the Contact with progression mode could provide a
good indication for the length of this mode and finally the level of the progression achieved by the oscillator,
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the border PX2;3 has been chosen to construct a global 2D map

P:S2! S2, (8)

which maps velocity y and c ¼ otþ j at the beginning of the Contact with progression mode to themselves,
ðynþ1;cnþ1Þ ¼ Pðyn;cnÞ (see [35]). Map P is an unknown combination of the local maps; and it can be equal to
P ¼ P1 � P4 � P3 � P2, P ¼ P6 � P2 or P ¼ P1 � P4 � P5 � P4 � P3 � P2 or another combination of local maps.
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For the harmonic external force the introduced 2D map is defined in the bounded region cn 2 ð0; 2pÞ,
yn 2 ð0; y

maxÞ, where ymax was estimated in [35].
4. Fixed points of two-dimensional map

Let us consider one of the simplest global periodic motion, shown in Fig. 4. It corresponds to a fix point of a
2D mapping which maps the beginning of Contact without progression mode to itself, S1! S1. We investigate
two specific maps, P̂ and �P describing period 1 and 2 motion. Map P̂ is the following combination of the local
maps,

P̂ ¼ P4 � P3 � P2 � P1. (9)

Based on Eq. (9) for ðti; yiÞ 2 S1 the mapping route is

P1: ðti; yiÞ ! ðtiþ1; yiþ1Þ,

P2: ðtiþ1; yiþ1Þ ! ðtiþ2; yiþ2Þ,

P3: ðtiþ2; yiþ2Þ ! ðtiþ3; yiþ3Þ,

P4: ðtiþ3; yiþ3Þ ! ðtiþ4; yiþ4Þ,

which results in the global map

P̂: ðti; yiÞ ! ðtiþ4; yiþ4Þ. (10)

Periodicity conditions for period one motion are

tiþ4 ¼ ti þ T and yiþ4 ¼ yi, (11)

where T ¼ 2p=o is a period of the external excitation.
The fixed points of the map (9) can be found analytically and their stability can be examined as the

behaviour of the system is described by linear ODEs in each smooth subspace. To do this the exact solutions
8
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given in Appendix A and numerical calculations of the intersections times tnþ1, tnþ2, tnþ3 and tnþ4 were used
and the procedure is described below.

The mapping P1 associates the initial moment of Contact without progression mode with initial moment of
Contact with progression mode. To find tiþ1 implicit equation G1ðtiþ1Þ ¼ 2xyðtiþ1Þ þ pðtiþ1Þ � e� 1 ¼ 0, has
to be solved, where functions yð�Þ and pð�Þ are given in Eq. (23):

G1ðtiþ1Þ ¼ bþ expð�xðtiþ1 � tiÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ bðC1;C2Þ

� �

þ
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q sinðotiþ1 þ jþ aÞ

þ 2x expð�xðtiþ1 � tiÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2Þ

� �2
64

þ
aoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q cosðotiþ1 þ jþ aÞ

3
75� 1 ¼ 0. ð12Þ

Coefficients C1 and C2 are functions of initial conditions and they are defined by Eqs. (24) and (25)

C1 ¼ C1ðti; eÞ,

C2 ¼ C2ðti; e; yiÞ, ð13Þ

where the formulae for a; g;bðC1;C2Þ and dðC1;C2Þ are listed in Eq. (26).
Once Eq. (12) is solved and tiþ1 is determined, first velocity yiþ1 and then relative displacement piþ1 can be

calculated from

yiþ1 ¼ expð�xðtiþ1 � tiÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2Þ

� �

þ
aoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q cosðotiþ1 þ jþ aÞ, ð14Þ

piþ1 ¼ 1þ e� 2xyiþ1, (15)

where coefficients C1;C2 can be calculated from Eq. (13).
The mappings P2, P3 and P4 are constructed in an identical manner, on which details can be found in

Appendix B. In Section 3 two additional local maps P5 and P6, which have not featured in current
development of global map for period one motion, have been mentioned. The details on P5 and P6 can be also
found in Appendix B.

Eqs. (11)–(15) and (28)–(34) allow to calculate analytically the solution. Once the analytical form of periodic
solution is available, the stability can be examined by analysing the corresponding Jacobian matrix of the
global map P̂. In our case from Eq. (9) the Jacobian matrix is computed by the chain rule (see e.g. [15]):

DP̂ ¼
qðtiþ4; yiþ4Þ

qðti; yiÞ

� �
ðti ;yiÞ

¼
Y4
j¼1

DPj ¼
Y4
j¼1

qðtiþj ; yiþjÞ

qðtiþj�1; yiþj�1Þ

" #
ðtiþj�1;yiþj�1;tiþj ;yiþjÞ

. (16)

For each mapping Pj, j 2 ½1; 4� Jacobian matrix can be calculated as

DPj ¼
qðtiþj ; yiþjÞ

qðtiþj�1; yiþj�1Þ

" #
ðtiþj�1;yiþj�1Þ

¼

qtiþj

qtiþj�1

qtiþj

qyiþj�1

qyiþj

qtiþj�1

qyiþj

qyiþj�1

2
66664

3
77775
ðtiþj�1;yiþj�1Þ

. (17)
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Equations GjðtiþjÞ ¼ 0, ðj 2 ½1; 4�Þ implicitly define tiþj as functions of ðtiþj�1; yiþj�1Þ. Thus using implicit
differentiation one can obtain partial differentials:

qtiþj

qtiþj�1
¼ �

qGj

qtiþj�1

qGj

qtiþj

�
, (18)

qtiþj

qyiþj�1

¼ �
qGj

qyiþj�1

qGj

qtiþj

�
. (19)

To obtain ðqyiþjÞ=ðqtiþj�1Þ and ðqyiþjÞ=ðqyiþj�1Þ derivatives of explicit functions (14), (29), (32) and (34) have
to be used, where values of ðqtiþjÞ=ðqtiþj�1Þ and ðqtiþjÞ=ðqyiþj�1Þ are calculated using Eqs. (18) and (19). The
explicit expressions for all terms of Jacobian matrices DPj, j 2 ½1; 6� can be found in Appendix B.

The eigenvalues of the Jacobian matrix (16) allow to study stability of period one motion by varying system
parameters. These eigenvalues can be expressed as l1;2 ¼ Reðl1;2Þ þ iIm ðl1;2Þ, where i ¼

ffiffiffiffiffiffiffi
�1
p

. If jljjo1 for
j ¼ 1; 2 the solution is stable, and it is unstable otherwise. By varying system parameters the stability can be
examined. Curve (a) in Fig. 5 shows a dependance of eigenvalue l1 on the static force b for a ¼ 0:3; x ¼ 0:01,
and o ¼ 0:1. The eigenvalue l2 is also a real number and it is very small in this range of b, jl2jo10�6. As can
be seen from Fig. 5, under decreasing b l1 becomes smaller than �1 at b ¼ 0:1249 which means that in
this point period one motion losses stability and a flip period doubling bifurcation occurs. This period
doubling bifurcation is clearly seen on the bifurcation diagram shown in Fig. 11b calculated also for
a ¼ 0:3; x ¼ 0:01; o ¼ 0:1.

Using the same approach the stability of period two regime with mapping �P ¼ P4 � P3 � P2 � P1 � P4 �

P3 � P2 � P1 can be investigated. The dependence of the first eigenvalue l1 calculated for this mapping �P on the
static force, b is shown by curve (b) in Fig. 5 indicating a difference in position of the bifurcation point for
increasing (period two loses stability) and decreasing (period one loses stability) value of control parameter b.
The second eigenvalue l2 is as before a real number jl2jo10�6.

Due to the fact that the second eigenvalue l2 is very small for all investigated system responses, an idea of
further reduction of dimensionality to 1D approximate map was pursued and this will be explored in the next
section.

5. One-dimensional approximate map

The detailed analysis of the considered system reveals that a further reduction to 1D approximate map is
possible. It has been found that the actual positions of the system at the end of the Contact with progression
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phase (points belonging to the hypersurface S3) are very close to the point

~S3 ¼ fðti; pi; yi; qiÞjpi ¼ 1þ e; yi ¼ 0; qi ¼ 1g (20)

and therefore approximate 1D map

P: ~S3! ~S3 (21)

can be introduced. Relation (21) maps the variable c at the end of the Contact with progression mode to itself,
cnþ1 ¼ PðcnÞ. The iterations of the proposed 1D approximate maps converging to period one regimes are
shown in Figs. 6 and 7, and to period six and for chaotic regimes in Fig. 8. In Figs. 6a, 7a and 8b each iterative
step is marked by numbers 1; 2; 3; . . . ; whereas in Fig. 8a numbers from 1 to 6 indicate the established period
six motion. As can be seen from these figures the 1D approximate maps are piecewise smooth, and they vary
significantly for different values of the static force.
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Let us consider the map shown in Fig. 7a in more details. This map is presented in symmetrical region of
phase shift c 2 ð�p;pÞ and as can be seen it has five distinctive smooth sub-regions marked by numbers from I
to V, where the first one is the continuation of the last one. Each of these sub-regions corresponds to different
types of system behaviour between two consecutive progression phases, i.e. for each of them the actual form of
the map P defined by a number of the No contact and Contact without progression modes is different. The
behaviour of the system on the ðp; yÞ plane during one iteration of the map for these sub-regions is shown in
Figs. 9a–f. For example, the graphs in Figs. 9a and b shows how starting from any cn in the first region,
system will go through Contact without progression (marked by dash line), No contact (thin solid line), Contact

without progression and Contact with progression (thick solid line) modes to reach cnþ1. These graphs are
calculated for cn ¼ �3 (Fig. 9a) and for cn ¼ �0:48 (Fig. 9b). The last value of cn ¼ �0:48 is close to the
second sub-region for which typical system behaviour is shown in Fig. 9c. In the first sub-region as the value of
cn increases, velocity of the mass hitting the slider decreases, and consequently the duration of the progression
phase decreases until the system is completely de-phased and impact of the mass does not cause any
progression. At this point cn ¼ �0:499 there is a jump on the map (Fig. 7a), and for any cn which is greater
than �0:499 the mass will hit the slider a number of times before it will build up energy for the next impact
with progression. In the second sub-region, there are three hits without progression (see zoom-up window in
Fig. 9c), in the third sub-region—two hits (Fig. 9d), in the forth sub-region—one hit (Fig. 9e), and in the fifth
sub-region again none (Fig. 9f).

As was mentioned earlier for this given set of parameters (a ¼ 0:3, b ¼ 0:15, x ¼ 0:01, o ¼ 0:1, j ¼ 0,
g ¼ 0:02), the system will settle down on the periodic orbit shown in Fig. 7(b) at cn ¼ 2:047. The transient
motion before the settling down, however, might be very different depending on the chosen initial value of cn.
Iteration of the 1D map starting from the chosen cn shows the sequence of the involved smooth sub-regions of
the map which gives understanding of the transients. For example, for the iterations 1–5 given in Fig. 7a the
transient motion is comprised of one iteration without additional impacts (this is marked by number 1 in
Fig. 7a), one iteration with three additional impacts (number 2) and finally 2 iterations without additional
impacts (numbers 3 and 4). This can be also seen from time history given in Fig. 10b, where the time moments
used for map construction marked by numbers from 1 to 6. Also it can be seen that the durations of each map
iteration might be different.
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The practical application of the developed map is to determine a progression of a vibro-impact system (see
[43]). The progression per one iteration of the map can be calculated using Eq. (5) and its dependance on the
phase shift cn is given in Fig. 10a. As can be seen from this figure the discontinuity of the map shown in
Fig. 7a at cn ¼ �0:499 corresponds to the jump of the progression per iteration.

From the analysis given above the following conclusions could be drawn. First, the discontinuities of the 1D
map are connected with grazing of the trajectory with hypersurface PX2;3 (i.e. the mass hits the slider but not
strong enough to make a progression), and this produces as a consequence a jump of progression per iteration
at certain value of cn, and second, the breaks of smoothness correspond to grazing of the trajectory with
hypersurface PX1;2, when the mass grazes the slider.

Comparisons of bifurcation diagrams calculated using the original differential equation Eqs. (2), 2D map
and 1D approximate map are shown in Fig. 11, where varying system parameter is static force b. The diagrams
presented in Figs. 11b and c are constructed by taking 300 iterations of the maps after eliminating the
transient processes (first 100 points of the maps iterations), while the diagram presented in Fig. 11a is
constructed by taking 300 points, once per period of external excitation, also after the transient process has
died down (which is assumed to last for 100 periods). As can clearly be seen from this figure for the most
values of the static force b, all diagrams indicate the same types of regimes. However, there are several values
(for example, b ¼ 0:27 marked by dash line) where the period two orbit shown in Figs. 11b and c appears as
period one orbit in Fig. 11a. This is because the duration of one iteration of both 2D map and 1D approximate
map is not constant, and for b ¼ 0:27 during one period of external excitation the progression phase
occurs twice.

6. Conclusions

Dynamics of the piecewise smooth nonlinear oscillators was considered, for which general methodology of
reducing multidimensional flows to low-dimensional maps has been proposed. It is postulated that the idea
developed in this paper is general and can be used for any piecewise smooth oscillator. To construct a low-
dimensional map, it is proposed to monitor the points of intersections of a chosen boundary between smooth
subspaces by a trajectory. The reduction of dimension is directly related to the dimension of the chosen
hypersurface, and the lower its dimension is, the larger dimension reduction can be achieved. The general
methodology includes a creation of the global map comprised of local maps constructed in the smooth sub-
regions of phase space.
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Fig. 11. Bifurcation diagrams cðbÞ calculated for a ¼ 0:3, x ¼ 0:01, o ¼ 0:1, j ¼ p=2, g ¼ 0:02 using (a) original differential equations, (b)
2D map and (c) 1D approximate map.
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Full details were given for a drifting impact oscillator, where 5D flow was reduced to 1D approximate
analytical map. An exact 2D map has been formulated and analysed. A further reduction to 1D approximate
map has been introduced and discussed. Piecewise smooth nature of the 2D and 1D approximate maps was
discovered, and it was found that breaks of the smoothness is caused by de-phasing of the system which
happens when trajectory grazes with hypersurfaces PX1;2 and PX2;3. Standard nonlinear dynamic analysis
revealed complex behaviour ranging from periodic oscillations to chaos and co-existence of multiple
attractors. Accuracy of the constructed maps was examined by comparing the dynamics responses with the
exact solutions for a wide range of system parameters and showing a good correspondence of approximate
and exact results.
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The main advantage of the proposed methodology is a large potential gain in dimensionality reduction
which translates to much faster and more accurate numerical analysis. This aspect will demonstrate its
importance when designing a control system in practical application (e.g. vibro-impact moling, [43]). More
work on so-called manifold reduction is required to generalize the proposed method to the smooth dynamical
systems and to transform the implicit maps (e.g. Eq. (12)) to explicit ones. Such explicit maps would reduce the
computational time even further.
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Appendix A

The solutions for each phase are given below for system initial position ðt0; p0; y0; q0Þ.
For No Contact phase:

pðtÞ ¼ p0 þ y0ðt� t0Þ þ
b

2
ðt� t0Þ

2

�
a

o2
½cosðotþ jÞ � cosðot0 þ jÞ þ oðt� t0Þ sinðot0 þ jÞ�,

yðtÞ ¼ y0 þ bðt� t0Þ þ
a

o
½sinðotþ jÞ � sinðot0 þ jÞ�,

qðtÞ ¼ q0 exp �
t� t0
2x

� �
. ð22Þ

For Contact without progression phase:

pðtÞ ¼ bþ eþ expð�xðt� t0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðt� t0Þ þ bðC1;C2Þ

� �

þ
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q sinðotþ jþ aÞ,

yðtÞ ¼ expð�xðt� t0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðt� t0Þ þ dðC1;C2Þ

� �

þ
aoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q cosðotþ jþ aÞ,

qðtÞ ¼ bþ expð�xðt� t0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðt� t0Þ þ bðC1;C2Þ

� �

þ
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q sinðotþ jþ aÞ, ð23Þ

where

C1ðt0; p0Þ ¼ p0 � b� e�
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q sinðot0 þ jþ aÞ, (24)

C2ðt0; p0; y0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p y0 þ xðp0 � b� eÞ �

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ o2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� o2Þ

2
þ 4x2o2

q sinðot0 þ jþ aþ gÞ

8><
>:

9>=
>; (25)
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and

a ¼ arctan
1� o2

2xo

� �
,

g ¼ arctan
o
x

� �
,

bðC1;C2Þ ¼ arctan
C1

C2

� �
,

dðC1;C2Þ ¼ arctan
�xC1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
C2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
C1 � xC2

 !
. ð26Þ

For Contact with progression phase:

pðtÞ ¼ eþ 1þ ðp0 � e� 1Þ exp �
t� t0
2x

� �
,

yðtÞ ¼ y0 þ ðb� 1Þðt� t0Þ þ
a

o
½sinðotþ jÞ � sinðot0 þ jÞ�,

qðtÞ ¼ 1þ ðq0 � 1Þ exp �
t� t0
2x

� �
. ð27Þ
Appendix B

The mapping P2 relates the initial moment of Contact with progression mode with its final moment.
Equation G2ðtiþ2Þ ¼ yðtiþ2Þ þ pðtiþ2Þ � e� 1 ¼ 0 is another implicit equation which needs to be solved in
order to determine time tiþ2, when the second mapping is completed. Formulae for yð�Þ and pð�Þ are given in
Eq. (27):

G2ðtiþ2Þ ¼ yiþ1 1� exp �
tiþ2 � tiþ1

2x

� �� �
þ ðb� 1Þðtiþ2 � tiþ1Þ

þ
a

o
½sinðotiþ2 þ jÞ � sinðotiþ1 þ jÞ� ¼ 0. ð28Þ

Once tiþ2 is calculated, the velocity yiþ2 can be determined from

yiþ2 ¼ yiþ1 þ ðb� 1Þðtiþ2 � tiþ1Þ þ
a

o
½sinðotiþ2 þ jÞ � sinðotiþ1 þ jÞ�. (29)

P3 associates the final moment of Contact with progression mode with the initial moment of No contact mode.
To find tiþ3 yet again an implicit equation G3ðtiþ3Þ ¼ 2xyðtiþ3Þ þ pðtiþ3Þ � e ¼ 0 has to be solved, where
functions yð�Þ and pð�Þ are given by Eq. (23). By substituting

tiþ1! tiþ3; ti ! tiþ2; yi ! yiþ2

to Eq. (12) one shall arrive with

G3 ¼ G1 þ 1, (30)

where coefficients C1 and C2 are now calculated as

C1 ¼ C1ðtiþ2; 1þ e� 2xyiþ2Þ,

C2 ¼ C2ðtiþ2; 1þ e� 2xyiþ2; yiþ2Þ. ð31Þ
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Once equation G3 ¼ 0 is solved and the time tiþ3 is calculated, first velocity yiþ3 and then relative
displacement piþ3 can be determined from

yiþ3 ¼ expð�xðtiþ3 � tiþ2ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ3 � tiþ2Þ þ dðC1;C2Þ

� �

þ
aoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q cosðotiþ3 þ jþ aÞ,

piþ3 ¼ e� 2xyiþ3, (32)

where coefficients C1; C2 are given in Eq. (31).
And finally the mapping P4 associates the initial moment of No Contact mode with its final moment. As

before to find tiþ4 the equation G4ðtiþ4Þ ¼ pðtiþ4Þ � qðtiþ4Þ � e ¼ 0 has to be solved, where functions yð�Þ and
pð�Þ are given by Eq. (22):

G4ðtiþ4Þ ¼ e� 2xyiþ3 þ yiþ3ðtiþ4 � tiþ3Þ þ
b

2
ðtiþ4 � tiþ3Þ

2

�
a

o2
½cosðotiþ4 þ jÞ � cosðotiþ3 þ jÞ þ oðtiþ4 � tiþ3Þ sinðotiþ3 þ jÞ�

þ 2xyiþ3 exp �
tiþ4 � tiþ3

2x

� �
� e ¼ 0. ð33Þ

Once Eq. (33) is solved and tiþ4 is found, yiþ4 can be calculated

yiþ4 ¼ yiþ3 þ bðtiþ4 � tiþ3Þ þ
a

o
½sinðotiþ4 þ jÞ � sinðotiþ3 þ jÞ�. (34)

The mapping P5 associates the initial moment of Contact without progression mode ðti; yiÞ with initial
moment of No contact mode ðtiþ1; yiþ1Þ. To find tiþ1 the equation G5ðtiþ1Þ ¼ 0 has to be solved, where
G5ðtiþ1Þ ¼ 2xyðtiþ1Þ þ pðtiþ1Þ � e and functions yð�Þ and pð�Þ are again given by Eqs. (23). Thus

G5 ¼ G1 þ 1, (35)

where coefficients C1 and C2 are calculated as (see Eqs. (26))

C1 ¼ C1ðti; eÞ,

C2 ¼ C2ðti; e; yiÞ. ð36Þ

Once equation G5ðtiþ1Þ ¼ 0 is solved and tiþ1 is found, yiþ1 and piþ1 are calculated from

yiþ1 ¼ expð�xðtiþ1 � tiÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2Þ

� �

þ
aoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q cosðotiþ1 þ jþ aÞ,

piþ1 ¼ e� 2xyiþ1, ð37Þ

where coefficients C1; C2 are given in Eqs. (36).
The mapping P6 associates the final moment of Contact with progression mode ðti; yiÞ with initial of Contact

with progression mode ðtiþ1; yiþ1Þ. To find tiþ1 equation G6ðtiþ1Þ ¼ 0, has to be solved, where G6ðtiþ1Þ ¼

2xyðtiþ1Þ þ pðtiþ1Þ � e� 1 and functions yð�Þ and pð�Þ are given by Eqs. (23). Thus

G6 ¼ G1, (38)

where coefficients C1 and C2 are calculated as (see Eqs. (26))

C1 ¼ C1ðti; 1þ e� 2xyiÞ,

C2 ¼ C2ðti; 1þ e� 2xyi; yiÞ. ð39Þ
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Once equation G6ðtiþ1Þ ¼ 0 is solved and tiþ1 is found, yiþ1 and piþ1 can be determined from

yiþ1 ¼ expð�xðtiþ1 � tiÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2Þ

� �

þ
aoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q cosðotiþ1 þ jþ aÞ,

piþ1 ¼ 1þ e� 2xyiþ1, ð40Þ

where coefficients C1; C2 are given in Eqs. (39).
The results of calculation of partial differentials for each mode are given below.
For mapping P1 we obtain:

qG1

qti

¼ expð�x tiþ1 � tiÞð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
xþ

C1
qC1

qti

þ C2
qC2

qti

C2
1 þ C2

2

0
BB@

1
CCA

8>><
>>:

� 2x sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2Þ

� �
þ sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ bðC1;C2Þ

� �� �

þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
þ

C2
qC1

qti

� C1
qC2

qti

C2
1 þ C2

2

0
BB@

1
CCA

� 2x cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2Þ

� �
þ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ bðC1;C2Þ

� �� �9>>=
>>;, ð41Þ

qG1

qyi

¼
expð�xðtiþ1 � tiÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
1 þ C2

2

q C1
qC1

qyi

þ C2
qC2

qyi

� ��

� 2x sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2ÞÞ þ sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ bðC1;C2Þ

� �� �

þ C2
qC1

qyi

� C1
qC2

qyi

� �

� 2x cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2ÞÞ þ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ bðC1;C2Þ

� �� �	
, ð42Þ

qG1

qtiþ1
¼ expð�xðtiþ1 � tiÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
2x �x sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2Þ

� ���

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2Þ

� ��
� x sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ bðC1;C2Þ

� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ bðC1;C2Þ

� ��

þ
aoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q ½�2xo sinðotiþ1 þ jþ aÞ þ cosðotiþ1 þ jþ aÞ�. ð43Þ
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Where coefficients C1; C2 are given in Eqs. (13) and

qC1

qti

¼ �
aoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q cosðoti þ jþ aÞ;
qC1

qyi

¼ 0,

qC2

qti

¼ �
aoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ o2

1� x2

s
cosðoti þ jþ aþ gÞ;

qC2

qyi

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p . ð44Þ

Thus we have

qtiþ1

qti

¼ �
qG1

qti

qG1

qtiþ1

�
, (45)

qtiþ1

qyi

¼ �
qG1

qyi

qG1

qtiþ1

�
, (46)

where qG1=qti, qG1=qyi and qG1=qtiþ1 ave given by Eqs. (41)–(43). Then we can calculate

qyiþ1

qti

¼ expð�xðtiþ1 � tiÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q

� sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2Þ

� �
�x

qtiþ1

qti

� 1

� �
þ

C1
qC1

qti

þ C2
qC2

qti

C2
1 þ C2

2

2
664

3
775

8>><
>>:

þ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
qtiþ1

qti

� 1

� �
þ

C2
qC1

qti

� C1
qC2

qti

C2
1 þ C2

2

2
664

3
775
9>>=
>>;

�
ao2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q sinðotiþ1 þ jþ aÞ
qtiþ1

qti

, ð47Þ

qyiþ1

qyi

¼ exp �xðtiþ1 � tiÞð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q

� sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2Þ

� �
�x

qtiþ1

qyi

þ

C1
qC1

qyi

þ C2
qC2

qyi

C2
1 þ C2

2

2
664

3
775

8>><
>>:

þ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
ðtiþ1 � tiÞ þ dðC1;C2Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
qtiþ1

qyi

þ

C2
qC1

qyi

� C1
qC2

qyi

C2
1 þ C2

2

2
664

3
775
9>>=
>>;

�
ao2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q sinðotiþ1 þ jþ aÞ
qtiþ1

qyi

, ð48Þ

where ðqtiþ1Þ=qti and ðqtiþ1Þ=qyi are given by Eqs. (45)–(46).
For mapping P2 it has been obtained

qtiþ2

qyiþ1

¼

exp �
tiþ2 � tiþ1

2x

� �
� 1

b� 1þ a cos otiþ2 þ jð Þ þ
yiþ1

2x
exp �

tiþ2 � tiþ1

2x

� � , (49)
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qtiþ2

qtiþ1
¼

b� 1þ a cosðotiþ1 þ jÞ þ
yiþ1

2x
exp �

tiþ2 � tiþ1

2x

� �

b� 1þ a cosðotiþ2 þ jÞ þ
yiþ1

2x
exp �

tiþ2 � tiþ1

2x

� � , (50)

qyiþ2

qyiþ1

¼ 1þ b� 1þ a cos otiþ2 þ jð Þð Þ
qtiþ2

qyiþ1

, (51)

qyiþ2

qtiþ1
¼ ðb� 1Þ

qtiþ2

qtiþ1
� 1

� �
þ a cosðotiþ2 þ jÞ

qtiþ2

qtiþ1
� cosðotiþ1 þ jÞ

� �
. (52)

For mapping P3 we have G3 ¼ G1 þ 1, where one have to substitute

tiþ1! tiþ3; ti ! tiþ2; yi ! yiþ2; yiþ1! yiþ3.

With this substitution formulas (41)–(43) and (45)–(48) can be used keeping in mind that C1 and C2 are now
given by Eqs. (31) and

qC1

qti

¼ �
aoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q cosðoti þ jþ aÞ;
qC1

qyi

¼ �2x,

qC2

qti

¼ �
aoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� o2Þ
2
þ 4x2o2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ o2

1� x2

s
cosðoti þ jþ aþ gÞ;

qC2

qyi

¼
1� 2x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p . (53)

For mapping P4 it has been obtained

qtiþ4

qyiþ3

¼

2x 1� exp �
tiþ4 � tiþ3

2x

� �� �
þ ðtiþ4 � tiþ3Þ

yiþ3 1� exp �
tiþ4 � tiþ3

2x

� �� �
þ bðtiþ4 � tiþ3Þ þ

a

o
ðsinðotiþ4 þ jÞ � sinðotiþ3 þ jÞÞ

, (54)

qtiþ4

qtiþ3
¼

yiþ3 1� exp �
tiþ4 � tiþ3

2x

� �� �
þ ½bþ cosðotiþ3 þ jÞ�ðtiþ4 � tiþ3Þ

yiþ3 1� exp �
tiþ4 � tiþ3

2x

� �� �
þ bðtiþ4 � tiþ3Þ þ

a

o
ðsinðotiþ4 þ jÞ � sinðotiþ3 þ jÞÞ

, (55)

qyiþ4

qyiþ3

¼ 1þ ½bþ cosðotiþ4 þ jÞ�
qtiþ4

qyiþ3

, (56)

qyiþ4

qtiþ3
¼ ½bþ cosðotiþ4 þ jÞ�

qtiþ4

qtiþ3
� ½bþ cosðotiþ3 þ jÞ�. (57)

For mapping P5 associating the initial state of Contact without progression mode ðti; yiÞ with initial state of
No contact mode ðtiþ1; yiþ1Þ, we have G5 ¼ G1 þ 1. Substituting G1 ! G5, formulas (41)–(43) and (45)–(48)
can be used keeping in mind that C1 and C2 are now given by Eqs. (36) and their partial differentials are given
by Eqs. (44).

For mapping P6 associating the final state of Contact with progression mode ðti; yiÞ with initial state of
Contact with progression mode ðtiþ1; yiþ1Þ, we have G6 ¼ G1. Substituting G1! G6, formulas (41)–(43) and
(45)–(48) can be used keeping in mind that C1 and C2 are now given by Eqs. (39) and their partial differentials
are given by Eqs. (53).
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